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a b s t r a c t 

We present an experimental and numerical investigation of the Darrieus–Landau instability in a quasi 

two-dimensional Hele-Shaw cell. Experiments and Lattice-Boltzmann numerical simulations are com- 

pared with Darrieus–Landau analytical theory, showing an excellent agreement for the exponential 

growth rate of the instability in the linear regime. The negative growth rate – second solution of the 

dispersion relation – was also measured numerically for the first time to the authors’ knowledge. Exper- 

iments and numerical simulations were then carried out beyond the cutoff wavelength, providing good 

agreement even in the unexplored regime where Darrieus–Landau is supplanted by diffusive stabiliza- 

tion. Lastly, the non-linear evolution involving the merging of crests on the experimental flame front is 

also successfully recovered using both the Michelson–Sivashinsky equation integration and the Lattice- 

Boltzmann simulation. 

© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

Lattice-Boltzmann (LB) methods have been proven very efficient

n the field of low-Mach external aerodynamics and aeroacous-

ics [1,2] . However, although the first attempt of using LB meth-

ds for low Mach number combustion has been published twenty

ears ago [3] , a lot of interest in LB methods for reactive flows

as been observed only recently [4–6] . We proposed in [6,7] a

ybrid LB framework (Lattice-Boltzmann/finite differences) able to

tudy combustion for low-Mach flows. Among the tests in [6] was

 preliminary study of the Darrieus–Landau instability of premixed

ames, a very challenging test case for LB methods since it cou-

les temperature and species fields to the velocity field. The un-

erlying coupling between the Lattice-Boltzmann and finite differ-

nces solvers was further improved in [8] , significantly improving

he method stability. 

Other numerical methods have been able to compute an impor-

ant characteristic of the Darrieus–Landau instability, the growth

ate of small amplitude perturbations as a function of wavenum-

er, for one-step chemistry [9,10] or for hydrogen–air flames [11] ,
ut it will be the first time that a LB method is able to describe 
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his phenomenon. The comparison will not be limited to linear

roperties of the instability, but we will also show that the LB

ethod also describes correctly the non linear evolution of the

ame. 

In this paper, we compare two-dimensional simulations with

ur hybrid LB method to quasi-2D experiments performed in a

ele-Shaw burner. Compared to [6] we will be able to obtain the

ull dispersion relation giving the growth rate as a function of

avenumber: it will be shown that this dispersion relation has the

ame form as that obtained in experiments, even beyond the cutoff

ave number. Furthermore, we extend the comparison up to times

here non-linearities play a significant role in the flame dynamics

hereby demonstrating the ability of the method to correctly pre-

ict these complex phenomena. 

. Numerical set-up 

The numerical simulations are carried out with the ProLB

oftware using a pressure-based hybrid regularized thermal Lat-

ice Boltzmann (LB) model coupled with a Finite Differences (FD)

olver. The probability density function f i (of finding gas particles

t x with velocity c i ) is solved using hybrid regularized collision

odel [6] . The streaming and collision process can be expressed

nder discrete form as 
. 

https://doi.org/10.1016/j.combustflame.2020.07.030
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Fig. 1. Experimental set-up. 
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f i (t + δt, x ) = f col 
i (t , x − c i δt ) , 

f col 
i (t, x ) = f eq 

i 
+ 

(
1 − δt 

τ

)
f neq 
i 

+ 

δt 

2 

F E i (1)

where τ̄ is a non-dimensional relaxation time, δt is the time-step,

c i is the i th discrete velocity of the D3Q19 lattice set, and f 
eq 
i 

and

f 
neq 
i 

the equilibrium and non-equilibrium segments of the distri-

bution function and F E 
i 

is the forcing term required to correctly

recover the stress tensor [6,12] . Full expressions for f 
eq 
i 

, f 
neq 
i 

, F E 
i 

and their relation with the macroscopic variables are provided in

Appendix A . Note that the expressions correspond to those pre-

sented in [6] , with the addition of the recent developments pre-

sented in [8] . 

It can be shown via the Chapman–Enskog expansion [6,8] that

the above system of equations is equivalent to solving the mass

and momentum conservation equations 

∂ρ

∂t 
+ 

∂ 

∂x α
(ρu α) = 0 , 

∂ρu α

∂t 
+ 

∂ 

∂x β
(ρu αu β ) = − ∂ p 

∂x α
+ 

∂T αβ

∂x β
(2)

at second-order in time and space, where notations follow [13] . 

The FD solver consists of mass conservation of species k and

enthalpy conservation equations solved through classical central

difference approach. Temporal integration of the FD equations is

explicit first-order in time, but the global order of the method

is close to second-order [6,8,12] . Further details on the coupling

between the two solvers are available in our recent publications

[6–8,12] . The species conservation equation reads 

ρ
∂Y k 
∂t 

+ ρu α
∂Y k 
∂x α

= 

∂ 

∂x α
(−ρY k V k,α ) + ˙ ω k (3)

where ˙ ω k is the net chemical production rate of species k , and

V k, α is its diffusion velocity [13] . The energy conservation can be

expressed in different ways, in this work we decide to consider

the enthalpy conservation of a gas mixture with multi-component

ideal gas thermodynamic closure: 

h = 

N ∑ 

k =1 

h k Y k h k = 

∫ T 

T 0 

C p,k (T ) dT + 	h 

0 
f,k , (4)

where T and h are linked through NASA polynomials leading to the

following enthalpy equation 

ρ
∂h 

∂t 
+ ρu α

∂h 

∂x α
= 

Dp 

Dt 
− ∂q α

∂x α
. (5)

where Dp 
Dt = 

∂ p 
∂t 

+ u α
∂ p 
∂x α

is neglected. The heat flux q α reads 

q α = −λ
∂T 

∂x α
+ ρ

N ∑ 

k =1 

h k Y k V k,α, (6)

with λ the thermal conductivity. Diffusion velocities are defined

as in [6] , using constant Schmidt number for each species (See

Table B.1 ), and a correction velocity to ensure mass conservation

[13] . 

3. Experimental set-up 

The experiments are carried out in a Hele-Shaw burner

[14–20] . The apparatus used here is made of two borosilicate glass

plates (1500 × 500 × 5 mm) vertically oriented and separated by

a 	 = 5 mm gap, shown in Fig. 1 . The burner is opened at the

top, and closed at the bottom and on the two vertical sides. At

the bottom of the facility a flow line controlled by two Bronkhorst

EL-Flow series mass-flow regulators allows to fill the burner with

a propane–air mixture with desired equivalence ratio ϕ. For all
he experiments presented hereafter, the Hele-shaw burner is filled

ith a propane–air mixture ϕ = 0 . 8 with a flow rate such that

he mixture velocity at the top of the burner is in excess to the

ame speed, allowing the flame to remain anchored as a Bunsen

ame at the top of the two glass plates. Then the mixture flow

s stopped (in a repeatable manner thanks to a solenoid valve)

nd the flame starts its downwards propagation. The initial flat

ront is rapidly destabilized due to Darrieus–Landau effect. Initial

erturbations are either magnified or damped according to their

espective growth rate, leading to typical Darrieus–Landau wrin-

led flame fronts. In order to measure the growth rate associated

ith perturbation of different wavelengths we make use of a forc-

ng method to select the desired wavelength. For this purpose,

 steel plate, laser-cut with a sinusoidal profile, is positioned at

op of the burner next to the anchored flame (see [21] for details

bout the experimental technique). This technique allows to print

n initial perturbation on the flame front. The flame front dynam-

cs is then recorded using a high speed camera (Photron FASTCAM

ini AX200) and analyzed using an image processing python code

based on the scikit-image opensource library [22] ). 

. Comparison and validation 

.1. Numerical setup 

The equations solved with the Lattice-Boltzmann method cor-

espond to two dimensional flames interacting with the velocity

eld and will be compared to quasi-2D experiments in the Hele-

haw burner. However these equations do not correspond to the

arrow-channel approximation [16] as the 5 mm gap used in the

xperiments is not sufficiently small. 

Propane–air thermochemical properties are as follow: 

• NASA polynomial coefficients for the thermodynamic closure

(p, T ) = f (ρ, h ) required in closing the governing equations (2) ,

(3) and (5) , 

• Power-law for the viscosity, yielding transport properties via

constant Prandtl and component-specific Schmidt numbers, 
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• One-step chemistry, where the pre-exponential parameter was

chosen so the flame velocity and thickness would be in agree-

ment with the dispersion relation. In particular, this leads to

a laminar flame velocity lower than usual, to account for heat

losses. 

A detailed account on these thermo-chemical parameters is

vailable in Appendix B . 

In the following, we consider a two-dimensional rectangular

omputational domain uniformly discretized with δx = 10 −4 m. The

omain width corresponds exactly to one wave length 

2 π
k 

for the

inear regime analysis ( Section 4.2 ). In the non-linear regime study

ection 4.3 the domain width is 160 mm, corresponding to one

hird of the size of the Hele-Shaw cell represented in Fig. 1 : in

he experiment, the same initial profile is reproduced three times

n the span-wise direction to improve periodicity. The time-step

s maintained at δt = 7 . 217 × 10 −8 s, corresponding to an acoustic

FL of 0.63. 

The right and left boundaries conditions are periodic, while a

xed wall is set at the bottom, and an open boundary conditions

s considered at the top, letting the burnt gases escape. 

The domain is initialized by computing first the one-

imensional premixed flame structure, e.g. T 1 D ( y ) for the tempera-

ure. That profile is then extended to the two-dimensional domain

s T (x, y, t = 0) = T 1 D (y − f (x )) , where f ( x ) is the desired geomet-

ical perturbation: 

• a single sine wave for the linear regime analysis ( Section 4.2 ) 

• a periodic experimental solution for the non-linear dynamics

analysis ( Section 4.3 ) 

Buoyancy forces are not taken into account in the Lattice Boltz-

ann numerical scheme. For downward propagating flames such

s those observed experimentally in the Hele-Shaw cell, the grav-

ty term leads to slightly lower growth rates, and does not have a

arge influence on the non linear evolution for short times. Inter-

sting papers on the role of gravity on the dispersion relation are

23] for two-dimensional flames and [24] in the narrow-channel

pproximation. 

.2. Linear regime analysis 

The linear dynamics is analyzed by perturbing the flame front

sing sinusoidal waves. Initially, the amplitude of the waves are

mall and are expected to grow because of the Darrieus–Landau

nstability. 

Considering that the thermal diffusive properties of the mix-

ure depends on the temperature as ρD th ∝ T β (with β = 0 . 69 ), the

heoretical dispersion relation is then given by Clavin and Garcia

23] (see also [25] ) : 

 (k ) σ 2 + B (k ) σ + C(k ) = 0 , (7)

here σ is the growth rate of the perturbation with wavenum-

er k. A ( k ), B ( k ), C ( k ) are coefficients depending on gas expansion

 = ρu /ρb , Markstein number M , laminar flame speed u L , flame

hickness d = D th /u L , and Prandtl number Pr as 

A (k ) = 

E + 1 

E 
+ 

E − 1 

E 
kd 

(
M − J 

E 

E − 1 

)
, 

B (k ) = u L k 

(
2 + 2 Ekd(M − J) 

)
, 

C(k ) = u 

2 
L k 

2 

(
(E − 1) k 

k c 
− (E − 1) 

)
, 

(8) 

here the cutoff wavenumber k c verifies k −1 
c = d(E β + 

3 E−1 
E−1 M −

2 E 
E−1 J + (2 P r − 1) H) . The integrals J and H can be found in [23,25] .

he positive root σ+ (the positive growth rate, leading to an
xponential amplification of the perturbations) of the quadratic

q. (7) verifies approximately 

+ = ak − bk 2 + O(k 3 ) . (9)

A straightforward development (see [17] ) leads to 

 = 

E 

E + 1 

[ 
S − 1 

] 
u L , (10)

here S = 

√ 

1 + E − 1 
E , the r elation σ = ak is the known Darrieus–

andau result without Markstein number effect, and 

 = −du L 

[ (
−a 2 

E − 1 

E 
− 2 aE 

)
M + J(a 2 + 2 aE) − E − 1 

k c d 

] / 

2 S. 

(11) 

his dispersion relation has also been obtained by Matalon and

oworkers for temperature dependent diffusivities (see [26,27] ). 

It has been possible to measure experimentally the dispersion

elation corresponding to Eq. (9) for 2D Bunsen flames [25] and

ecently some of the authors have measured the dispersion rela-

ion in a Hele-Shaw cell [17,21] . Numerically some measurements

f growth rates have been performed, first for one-step chemistry

9,10,28] and recently for hydrogen–air flames [11,27,29] . 

Note that a negative root σ− of the quadratic Eq. (7) also ex-

sts, we will show later that we are able to measure this negative

rowth rate in the numerical simulations. Anyway, as the precision

n the calculation decreases when the damping increases, we will

efer to the approximate formula, only valid for low wavenumbers:

− = 

E 

E + 1 

[ −S − 1] u L k + O(k 2 ) . (12)

his mode attenuates fast and the positive mode associated to σ+ 
ecomes dominant. This phenomenon is observed in the simula-

ion results and is presented in Fig. 2 . The initial instances of the

rowth are exponential and are defined in terms of both modes as:

 = A 0 e 
σ+ t + A 1 e 

σ−t , (13)

here σ+ and σ− correspond to the growth rates of the positive

nd negative mode respectively. 

Our initial condition is a front slightly harmonically perturbed

ompared to the plane front, imposed following the strategy pre-

ented in Section 4.1 . Let us note however that the velocity field

ould not be chosen in order to only have the growing mode of

he instability, so that we have a transient. However, the precise

ransient does not change our estimate for the negative growth

ate. 

The Amplitude (A), computed using Fourier Transform, is re-

orted in Fig. 2 , for an initial sinusoidal perturbation at k =
 . 52 mm 

−1 . The fit of the positive mode ( σ+ ), A = A 0 e 
σ+ t from

q. (13) is represented in Fig. 2 a. Furthermore, the initial pres-

nce of two modes is underlined in Fig. 2 b, along with the fit of

he negative mode ( σ−). We clearly see that fitting the solution

s the linear combination mentioned in Eq. (13) is accurate for all

imes, provided the linear regime is valid, until the amplitude of

he mode saturates due to nonlinear effect. 

As seen from Eq. (9) , the positive mode of the growth is of the

orm σ ∝ | k | − k 2 . The initial growth is measured and compared to

he theoretical dispersion relation, written in the following way 

= 

4 σM 

k c 

(
| k | − k 2 

k c 

)
, (14) 

here σ M 

is the growth rate of the most amplified wavelength and

 c the cutoff wavenumber. This dispersion relation is then fitted on

he computed results. In order to have a quantitative agreement

ith the experimental results (we will only show propane–air
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Fig. 2. Linear stage dynamics. (a) Evolution of normalized amplitude (A) calculated from numerical simulation (red dashed line) and gradient fit related to σ+ (black solid 

line) presented over time where development of non-linear stage is observed. (b) Gradient fit related to σ− (black dash–dotted line), gradient fit related to σ+ (black dotted 

line), evolution of A (red dashed line) and sum of both fits related to σ− and σ+ (black solid line, indistinguishable from the red dashed line) presented at the initial instances 

where both modes ( σ+ , σ−) are present. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Observation of growth and decay with wavenumbers higher and lower than k c . Propagation of the flame is from top to bottom. Left: Growth at wavenumber lower 

than k c . Right: Decay with wavenumber higher than k c . Experimental (Black), and Numerical (blue) results. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 4. Quantification and comparison of σ+ and σ− . (a) Growth rate ( σ+ ) measurement obtained from the experimental (blue triangles) and numerical (red circles) inves- 

tigations. The theoretical dispersion relation (black dashed line) is then fitted with σm = 60 s −1 and k c = 0 . 9 mm 

−1 . (b) Growth rates ( σ−) computed from simulations (red 

error bars) and theoretical solution from Eq. (12) (black dashed line). (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 5. Darrieus–Landau non linear evolution: (a) Experimental, (b) Numerical re- 

sults and (c) MS equation starting from the same initial condition extracted from 

the experiment. 
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ames with equivalence ratio ϕ = 0 . 8 ), we choose in the numeri-

al simulations the following parameters: u L = 0 . 177 m/s, E = 7 . 12 ,

 = 0 . 53 mm. Indeed the heat losses in the Hele-Shaw burner are

arge and lead to a weaker hydrodynamic instability than what is

bserved in a tube. u L and d have been chosen to have an agree-

ent with the experimental dispersion relation, in particular we

ave taken a value for u L lower than the laminar flame speed for

quivalence ratio ϕ = 0 . 8 . Further details are given in Appendix B . 

Figure 3 qualitatively shows the growth of perturbations at low

avenumber and decay for a wavenumber larger than k c . The fig-

re in black corresponds to an experiment (propane, ϕ = 0 . 8 ), and

s compared to a numerical simulation for an unstable wavenum-

er. The figure on the right is a numerical simulation for a stable

avenumber (larger than k c ) 

Quantitative agreement between numerical and experimental

esults is shown in Fig. 4 a, where the numerical results (red cir-

les) are compared to experiments (blue triangles) and to a fit

f the dispersion relation ( Eq. (14) ). Note that we have also been

ble to measure the negative growth rate ( Fig. 4 b), which is com-

ared to Eq. (12) . The negative growth rates are presented as error
ars, given the difficulty of measuring accurately the quantity due

o initial pressure perturbations present in the computational do-

ain. Although the Lattice-Boltzmann measurements are slightly

elow the theoretical curve, the agreement is relatively good. To

he knowledge of the authors, this is the first time in the literature

hat this negative growth rate is measured. 

We thus have evidenced that our hybrid LBM method is able

o correctly describe the linear premixed flame dynamics. It will

e demonstrated in the next subsection that an agreement is also

ossible for the non linear evolution of the flame. 

.3. Non-linear dynamics 

A very unstable premixed flame (a flame in a large domain,

ften called a self-turbulent flame [30] ) leads to a complex non

inear evolution involving merging and creation of new crests on

he flame front. We have to show that our numerical simulations

re able to describe correctly these effects. The LB simulations will

hus be compared to experiments (see also [31] ) and to the results

f the Sivashinsky equation (or Michelson Sivashinsky: MS equa-

ion) [32] . This equation, solved with periodic boundary conditions,

ncludes the linear dispersion relation ( Eq. (14) ), and a quadratic

on-linearity and writes as: 

t + 

u A 

2 

φ2 
x = 

4 σM 

k c 

(
φxx 

k c 
+ I(φ, x ) 

)
, (15) 

here φ stands for the vertical position of the front, x is the trans-

erse coordinate and t the time. σ M 

and k c are the parameters

iven in Eq. (14) , k c is the cut-off wavenumber, I ( φ, x ) is the Lan-

au operator corresponding to a multiplication by | k | in Fourier

pace. The curvature term φxx comes from the thermal diffusive

estabilization and is responsible for the damping of disturbances

t small scales. Finally, φ2 
x is a non linear term responsible for the

ormation of cusps. For low expansion E, u A is close to the laminar

ame speed, this is no longer the case for large E [33,34] . This pa-

ameter u A is fitted to obtain amplitudes of the flame comparable

o experiments. 

In order, to compare the evolution given by the LBM integra-

ion and the MS model with an experiment, a flame is ignited

t the top of the Hele-Shaw as a forced inverted V-flame. After

 few instants of propagation, when the cusps start to be visible

n the flame front, we extract the flame contour ( y = f (x ) ) from

he recorded images using an image processing algorithm. The ob-

ained flame contour is then used as an initial condition for nu-

erical integration (MS : φ(x, t = 0) = f (x ) LBM : T (x, y, t = 0) =
 1 D (y − f (x )) ). 

In Fig. 5 , we show the comparison between the evolution of ex-

erimental propane–air fronts ( ϕ = 0 . 8 ), (Top figure, in black), the

B simulations, in blue, and the MS equation (Bottom figure, green

ines). In each case, the positions of the cusps are highlighted, in

rder to better compare the three different evolutions. 

As can be seen in the figure, the crest merging process is cor-

ectly described for short times by both the LB simulations and the

ivashinsky equation. The LB simulations are actually closer to ex-

eriments, which may be caused by the fact that the LB dispersion

elation is slightly larger compared to the MS one close to k c (see

ig. 4 ) or by the fact that flow non-linearities (neglected at the

rst order in gas expansion in the MS model) play a significant

ole. A difference between the experiments and the other figures

s the creation of new cusps. This effect, which is not observed in

he LB or MS simulations, could be caused by effects that we have

eglected, such as additional noise, or gravity (the experimental

remixed flames are actually propagating downwards). 
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Table B1 

Prandtl number and Schmidt numbers for each specie. 

Pr 0.682 

S C 3 H 8 1.241 

S O 2 0.728 

S CO 2 0.941 

S H 2 O 0.537 

S N 2 0.690 

Table B2 

Initial conditions: 1-D domain is initialized with fresh gases corresponding to (0: 

L /2) and burnt gases ( L /2: L ). 

Variables Fresh gases Burnt gases 

T 300 K 2069.98 K 

p 1 atm 1 atm 

Y C 3 H 8 4 . 88 × 10 −2 6 . 76 × 10 −15 

Y O 2 2 . 21 × 10 −1 4 . 39 × 10 −2 

Y CO 2 9 . 74 × 10 −18 1 . 46 × 10 −1 

Y H 2 O 1 . 54 × 10 −13 8 . 02 × 10 −2 

Y N 2 7 . 29 × 10 −1 7 . 29 × 10 −1 
5. Conclusion 

Simulations performed with an hybrid Lattice-Boltzmann model

for low-Mach reactive flows were presented in this paper for pre-

mixed flames unstable relative to the Darrieus–Landau instabil-

ity. We were able to compare quantitatively the numerical results

with quasi 2D experiments in a Hele-Shaw cell. The growth rates

of the instability were measured by studying the development of

small amplitude perturbations, and it was even possible to mea-

sure the decaying mode of the instability, showing the precision of

the method. A correct agreement with experiments was also ob-

served for the non linear evolution of the flame front. 
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Appendix A. Expressions for the LBM solver 

In the low-Mach number approximation, the equilibrium func-

tion can be truncated at second-order as 

f eq 
i 

= w i 

[ 

ρθ + 

ρc iαu α

c 2 s 

+ 

H 

(2) 
i,αβ

a (2) , eq 

αβ

2 c 4 s 

] 

, 

f neq 
i 

= 

ω i 

2 c 4 s 

H 

(2) 
i,αβ

a neq 

αβ
, (A.1)

where, 

H 

(2) 
i,αβ

= c iαc iβ − c 2 s δαβ, a (2) , eq 

αβ
= ρu αu β, 

a neq 

αβ
= H 

(2) 
i,αβ

(
f i − f eq 

i 

)
, (A.2)

θ is the normalized temperature linked with pressure as p = ρc 2 s θ,

using ideal gas law, w i is the weight coefficient related to the dis-

crete velocity c i and c s is the lattice sound speed. Note that the

equilibrium function differs from [6] , and was adapted from [8] ,

enhancing numerical stability. In particular, the pressure contribu-

tion θ is now inserted in the zeroth moment of (A.2) rather than

higher moments as in [6] . 

Consequently [8] , the reconstruction of macroscopic variables

now read 

ρ(t + δt, x ) = 

∑ 

f col 
i + ρ(t, x )(1 − θ (t, x )) 

(ρu α)(t + δt, x ) = 

∑ 

c iα f col 
i . (A.3)

Finally, the required forcing term is obtained as 
 

E 
i = 

ω i 

2 c 4 s 

H 

(2) 
i,αβ

[ 
c 2 s u αρ,β + c 2 s u βρ,α + δαβρc 2 s 

(
2 

3 

− ηB 

μ

)
u γ ,γ

+ 	(ρu αu β ) − δαβc 2 s 	[ ρ(1 − θ )] 

] 
, (A.4)

ith ηB is the bulk viscosity, and 

	(ρu αu β ) = (ρu αu β )(t + δt, x ) − (ρu αu β )(t, x ) , 

[ ρ(1 − θ )] = ρ(t + δt, x )(1 − θ (t + δt, x )) 

− ρ(t, x )(1 − θ (t, x )) . (A.5)

ppendix B. Numerical simulation parameters 

In this article we consider one-step propane/air mixture with 5

pecies: C 3 H 8 , O 2 , H 2 O , CO 2 , N 2 . The thermal and species diffusion

oefficients are calculated using Schmidt and Prandtl numbers, de-

ailed in Table B.1 . Along with the use of viscosity’s power law, 

= μ0 

(
T 

T 0 

)β

, (B.1)

here reference viscosity μ0 = 1 . 782 × 10 −5 , reference Tempera-

ure T 0 = 300 K and coefficient β = 0 . 69 . Furthermore, classical

ASA polynomials for each species k are used to define the ther-

odynamic properties. 

In order to define the chemical source term a one-step Ar-

henius kinetic model is used, following global reaction C 3 H 8 +
 O 2 −→ 3 CO 2 + 4 H 2 O , associated with the kinetic rate ω =
 chem 

.C C 3 H 8 .C O 2 .e 
−E a /RT , where k chem 

= 8 . 77 × 10 13 cm 

3 mol −1 s −1 ,

 a = 30 kcal / mol , and C i are the molar concentrations for species

 . The initial conditions used in order to compute 1-D premixed

rofiles at equivalence ratio ( φ = 0 . 8 ) are detailed in Table B.2 . 

Given that the model presented in Section 2 does not ac-

ount for heat losses, experimental results cannot be compared

o the simulated result. In order to overcome this problem, we

sed Eq. (10) and relation σ = ak to compute the flame speed

 

exp 
L 

= 0 . 177 m/s which corresponds to growth obtained experi-

entally at lower wave-numbers. Furthermore, the original value

 chem 

= 9 . 9 × 10 13 cm 

3 mol −1 s −1 [7] associated to the chemical

eaction rate is modified to k chem 

= 8 . 77 × 10 13 cm 

3 mol −1 s −1 in

rder to recover S 
exp 
L 

in our simulations. Lastly, to assure that we

ecover comparable σ m 

, flame thickening model [35] with a factor

f 1.48 is used to recover the flame thickness. These adjustments

llow us to compare the growth rates with the experimental re-

ults. 

https://doi.org/10.13039/501100001665
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